Syn-QG: Syntactic and Shallow Semantic Rules for Question Generation (2004.08694v5)
Abstract: Question Generation (QG) is fundamentally a simple syntactic transformation; however, many aspects of semantics influence what questions are good to form. We implement this observation by developing SynQG, a set of transparent syntactic rules leveraging universal dependencies, shallow semantic parsing, lexical resources, and custom rules which transform declarative sentences into question-answer pairs. We utilize PropBank argument descriptions and VerbNet state predicates to incorporate shallow semantic content, which helps generate questions of a descriptive nature and produce inferential and semantically richer questions than existing systems. In order to improve syntactic fluency and eliminate grammatically incorrect questions, we employ back-translation over the output of these syntactic rules. A set of crowd-sourced evaluations shows that our system can generate a larger number of highly grammatical and relevant questions than previous QG systems and that back-translation drastically improves grammaticality at a slight cost of generating irrelevant questions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.