Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

BiFNet: Bidirectional Fusion Network for Road Segmentation (2004.08582v1)

Published 18 Apr 2020 in cs.CV

Abstract: Multi-sensor fusion-based road segmentation plays an important role in the intelligent driving system since it provides a drivable area. The existing mainstream fusion method is mainly to feature fusion in the image space domain which causes the perspective compression of the road and damages the performance of the distant road. Considering the bird's eye views(BEV) of the LiDAR remains the space structure in horizontal plane, this paper proposes a bidirectional fusion network(BiFNet) to fuse the image and BEV of the point cloud. The network consists of two modules: 1) Dense space transformation module, which solves the mutual conversion between camera image space and BEV space. 2) Context-based feature fusion module, which fuses the different sensors information based on the scenes from corresponding features.This method has achieved competitive results on KITTI dataset.

Citations (25)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.