Papers
Topics
Authors
Recent
2000 character limit reached

ETC: Encoding Long and Structured Inputs in Transformers (2004.08483v5)

Published 17 Apr 2020 in cs.LG and stat.ML

Abstract: Transformer models have advanced the state of the art in many NLP tasks. In this paper, we present a new Transformer architecture, Extended Transformer Construction (ETC), that addresses two key challenges of standard Transformer architectures, namely scaling input length and encoding structured inputs. To scale attention to longer inputs, we introduce a novel global-local attention mechanism between global tokens and regular input tokens. We also show that combining global-local attention with relative position encodings and a Contrastive Predictive Coding (CPC) pre-training objective allows ETC to encode structured inputs. We achieve state-of-the-art results on four natural language datasets requiring long and/or structured inputs.

Citations (54)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.