Papers
Topics
Authors
Recent
2000 character limit reached

Motion and Region Aware Adversarial Learning for Fall Detection with Thermal Imaging (2004.08352v2)

Published 17 Apr 2020 in cs.CV and cs.LG

Abstract: Automatic fall detection is a vital technology for ensuring the health and safety of people. Home-based camera systems for fall detection often put people's privacy at risk. Thermal cameras can partially or fully obfuscate facial features, thus preserving the privacy of a person. Another challenge is the less occurrence of falls in comparison to the normal activities of daily living. As fall occurs rarely, it is non-trivial to learn algorithms due to class imbalance. To handle these problems, we formulate fall detection as an anomaly detection within an adversarial framework using thermal imaging. We present a novel adversarial network that comprises of two-channel 3D convolutional autoencoders which reconstructs the thermal data and the optical flow input sequences respectively. We introduce a technique to track the region of interest, a region-based difference constraint, and a joint discriminator to compute the reconstruction error. A larger reconstruction error indicates the occurrence of a fall. The experiments on a publicly available thermal fall dataset show the superior results obtained compared to the standard baseline.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.