Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Faster Approximate Pattern Matching: A Unified Approach (2004.08350v2)

Published 17 Apr 2020 in cs.DS

Abstract: Approximate pattern matching is a natural and well-studied problem on strings: Given a text $T$, a pattern $P$, and a threshold $k$, find (the starting positions of) all substrings of $T$ that are at distance at most $k$ from $P$. We consider the two most fundamental string metrics: the Hamming distance and the edit distance. Under the Hamming distance, we search for substrings of $T$ that have at most $k$ mismatches with $P$, while under the edit distance, we search for substrings of $T$ that can be transformed to $P$ with at most $k$ edits. Exact occurrences of $P$ in $T$ have a very simple structure: If we assume for simplicity that $|T| \le 3|P|/2$ and trim $T$ so that $P$ occurs both as a prefix and as a suffix of $T$, then both $P$ and $T$ are periodic with a common period. However, an analogous characterization for the structure of occurrences with up to $k$ mismatches was proved only recently by Bringmann et al. [SODA'19]: Either there are $O(k2)$ $k$-mismatch occurrences of $P$ in $T$, or both $P$ and $T$ are at Hamming distance $O(k)$ from strings with a common period $O(m/k)$. We tighten this characterization by showing that there are $O(k)$ $k$-mismatch occurrences in the case when the pattern is not (approximately) periodic, and we lift it to the edit distance setting, where we tightly bound the number of $k$-edit occurrences by $O(k2)$ in the non-periodic case. Our proofs are constructive and let us obtain a unified framework for approximate pattern matching for both considered distances. We showcase the generality of our framework with results for the fully-compressed setting (where $T$ and $P$ are given as a straight-line program) and for the dynamic setting (where we extend a data structure of Gawrychowski et al. [SODA'18]).

Citations (40)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.