Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Accelerating Physics-Informed Neural Network Training with Prior Dictionaries (2004.08151v2)

Published 17 Apr 2020 in cs.LG and stat.ML

Abstract: Physics-Informed Neural Networks (PINNs) can be regarded as general-purpose PDE solvers, but it might be slow to train PINNs on particular problems, and there is no theoretical guarantee of corresponding error bounds. In this manuscript, we propose a variant called Prior Dictionary based Physics-Informed Neural Networks (PD-PINNs). Equipped with task-dependent dictionaries, PD-PINNs enjoy enhanced representation power on the tasks, which helps to capture features provided by dictionaries so that the proposed neural networks can achieve faster convergence in the process of training. In various numerical simulations, compared with existing PINN methods, combining prior dictionaries can significantly enhance convergence speed. In terms of theory, we obtain the error bounds applicable to PINNs and PD-PINNs for solving elliptic partial differential equations of second order. It is proved that under certain mild conditions, the prediction error made by neural networks can be bounded by expected loss of PDEs and boundary conditions.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube