Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Cascaded Context Enhancement Network for Automatic Skin Lesion Segmentation (2004.08107v3)

Published 17 Apr 2020 in eess.IV and cs.CV

Abstract: Skin lesion segmentation is an important step for automatic melanoma diagnosis. Due to the non-negligible diversity of lesions from different patients, extracting powerful context for fine-grained semantic segmentation is still challenging today. Although the deep convolutional neural network (CNNs) have made significant improvements on skin lesion segmentation, they often fail to reserve the spatial details and long-range dependencies context due to consecutive convolution striding and pooling operations inside CNNs. In this paper, we formulate a cascaded context enhancement neural network for automatic skin lesion segmentation. A new cascaded context aggregation (CCA) module with a gate-based information integration approach is proposed to sequentially and selectively aggregate original image and multi-level features from the encoder sub-network. The generated context is further utilized to guide discriminative features extraction by the designed context-guided local affinity (CGL) module. Furthermore, an auxiliary loss is added to the CCA module for refining the prediction. In our work, we evaluate our approach on four public skin dermoscopy image datasets. The proposed method achieves the Jaccard Index (JA) of 87.1%, 80.3%, 83.4%, and 86.6% on ISIC-2016, ISIC-2017, ISIC-2018, and PH2 datasets, which are higher than other state-of-the-art models respectively.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.