Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

One-vs-Rest Network-based Deep Probability Model for Open Set Recognition (2004.08067v2)

Published 17 Apr 2020 in cs.CV and cs.LG

Abstract: Unknown examples that are unseen during training often appear in real-world computer vision tasks, and an intelligent self-learning system should be able to differentiate between known and unknown examples. Open set recognition, which addresses this problem, has been studied for approximately a decade. However, conventional open set recognition methods based on deep neural networks (DNNs) lack a foundation for post recognition score analysis. In this paper, we propose a DNN structure in which multiple one-vs-rest sigmoid networks follow a convolutional neural network feature extractor. A one-vs-rest network, which is composed of rectified linear unit activation functions for the hidden layers and a single sigmoid target class output node, can maximize the ability to learn information from nonmatch examples. Furthermore, the network yields a sophisticated nonlinear features-to-output mapping that is explainable in the feature space. By introducing extreme value theory-based calibration techniques, the nonlinear and explainable mapping provides a well-grounded class membership probability models. Our experiments show that one-vs-rest networks can provide more informative hidden representations for unknown examples than the commonly used SoftMax layer. In addition, the proposed probability model outperformed the state-of-the art methods in open set classification scenarios.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.