Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Speech Paralinguistic Approach for Detecting Dementia Using Gated Convolutional Neural Network (2004.07992v3)

Published 16 Apr 2020 in eess.AS, cs.LG, cs.SD, and q-bio.QM

Abstract: We propose a non-invasive and cost-effective method to automatically detect dementia by utilizing solely speech audio data. We extract paralinguistic features for a short speech segment and use Gated Convolutional Neural Networks (GCNN) to classify it into dementia or healthy. We evaluate our method on the Pitt Corpus and on our own dataset, the PROMPT Database. Our method yields the accuracy of 73.1% on the Pitt Corpus using an average of 114 seconds of speech data. In the PROMPT Database, our method yields the accuracy of 74.7% using 4 seconds of speech data and it improves to 80.8% when we use all the patient's speech data. Furthermore, we evaluate our method on a three-class classification problem in which we included the Mild Cognitive Impairment (MCI) class and achieved the accuracy of 60.6% with 40 seconds of speech data.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.