Papers
Topics
Authors
Recent
2000 character limit reached

Speech Paralinguistic Approach for Detecting Dementia Using Gated Convolutional Neural Network (2004.07992v3)

Published 16 Apr 2020 in eess.AS, cs.LG, cs.SD, and q-bio.QM

Abstract: We propose a non-invasive and cost-effective method to automatically detect dementia by utilizing solely speech audio data. We extract paralinguistic features for a short speech segment and use Gated Convolutional Neural Networks (GCNN) to classify it into dementia or healthy. We evaluate our method on the Pitt Corpus and on our own dataset, the PROMPT Database. Our method yields the accuracy of 73.1% on the Pitt Corpus using an average of 114 seconds of speech data. In the PROMPT Database, our method yields the accuracy of 74.7% using 4 seconds of speech data and it improves to 80.8% when we use all the patient's speech data. Furthermore, we evaluate our method on a three-class classification problem in which we included the Mild Cognitive Impairment (MCI) class and achieved the accuracy of 60.6% with 40 seconds of speech data.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.