Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bridging Anaphora Resolution as Question Answering (2004.07898v3)

Published 16 Apr 2020 in cs.CL

Abstract: Most previous studies on bridging anaphora resolution (Poesio et al., 2004; Hou et al., 2013b; Hou, 2018a) use the pairwise model to tackle the problem and assume that the gold mention information is given. In this paper, we cast bridging anaphora resolution as question answering based on context. This allows us to find the antecedent for a given anaphor without knowing any gold mention information (except the anaphor itself). We present a question answering framework (BARQA) for this task, which leverages the power of transfer learning. Furthermore, we propose a novel method to generate a large amount of "quasi-bridging" training data. We show that our model pre-trained on this dataset and fine-tuned on a small amount of in-domain dataset achieves new state-of-the-art results for bridging anaphora resolution on two bridging corpora (ISNotes (Markert et al., 2012) and BASHI (Roesiger, 2018)).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Yufang Hou (49 papers)
Citations (45)

Summary

We haven't generated a summary for this paper yet.