Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Entanglement is Necessary for Optimal Quantum Property Testing (2004.07869v1)

Published 16 Apr 2020 in quant-ph and cs.DS

Abstract: There has been a surge of progress in recent years in developing algorithms for testing and learning quantum states that achieve optimal copy complexity. Unfortunately, they require the use of entangled measurements across many copies of the underlying state and thus remain outside the realm of what is currently experimentally feasible. A natural question is whether one can match the copy complexity of such algorithms using only independent---but possibly adaptively chosen---measurements on individual copies. We answer this in the negative for arguably the most basic quantum testing problem: deciding whether a given $d$-dimensional quantum state is equal to or $\epsilon$-far in trace distance from the maximally mixed state. While it is known how to achieve optimal $O(d/\epsilon2)$ copy complexity using entangled measurements, we show that with independent measurements, $\Omega(d{4/3}/\epsilon2)$ is necessary, even if the measurements are chosen adaptively. This resolves a question of Wright. To obtain this lower bound, we develop several new techniques, including a chain-rule style proof of Paninski's lower bound for classical uniformity testing, which may be of independent interest.

Citations (44)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.