Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RGBD-Dog: Predicting Canine Pose from RGBD Sensors (2004.07788v1)

Published 16 Apr 2020 in cs.CV

Abstract: The automatic extraction of animal \reb{3D} pose from images without markers is of interest in a range of scientific fields. Most work to date predicts animal pose from RGB images, based on 2D labelling of joint positions. However, due to the difficult nature of obtaining training data, no ground truth dataset of 3D animal motion is available to quantitatively evaluate these approaches. In addition, a lack of 3D animal pose data also makes it difficult to train 3D pose-prediction methods in a similar manner to the popular field of body-pose prediction. In our work, we focus on the problem of 3D canine pose estimation from RGBD images, recording a diverse range of dog breeds with several Microsoft Kinect v2s, simultaneously obtaining the 3D ground truth skeleton via a motion capture system. We generate a dataset of synthetic RGBD images from this data. A stacked hourglass network is trained to predict 3D joint locations, which is then constrained using prior models of shape and pose. We evaluate our model on both synthetic and real RGBD images and compare our results to previously published work fitting canine models to images. Finally, despite our training set consisting only of dog data, visual inspection implies that our network can produce good predictions for images of other quadrupeds -- e.g. horses or cats -- when their pose is similar to that contained in our training set.

Citations (55)

Summary

We haven't generated a summary for this paper yet.