Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Evaluation of Generalizability of Neural Program Analyzers under Semantic-Preserving Transformations (2004.07313v2)

Published 15 Apr 2020 in cs.SE, cs.LG, and cs.PL

Abstract: The abundance of publicly available source code repositories, in conjunction with the advances in neural networks, has enabled data-driven approaches to program analysis. These approaches, called neural program analyzers, use neural networks to extract patterns in the programs for tasks ranging from development productivity to program reasoning. Despite the growing popularity of neural program analyzers, the extent to which their results are generalizable is unknown. In this paper, we perform a large-scale evaluation of the generalizability of two popular neural program analyzers using seven semantically-equivalent transformations of programs. Our results caution that in many cases the neural program analyzers fail to generalize well, sometimes to programs with negligible textual differences. The results provide the initial stepping stones for quantifying robustness in neural program analyzers.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.