Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Locality Sensitive Hashing for Set-Queries, Motivated by Group Recommendations (2004.07286v3)

Published 15 Apr 2020 in cs.DS, cs.CG, and cs.IR

Abstract: Locality Sensitive Hashing (LSH) is an effective method to index a set of points such that we can efficiently find the nearest neighbors of a query point. We extend this method to our novel Set-query LSH (SLSH), such that it can find the nearest neighbors of a set of points, given as a query. Let $ s(x,y) $ be the similarity between two points $ x $ and $ y $. We define a similarity between a set $ Q$ and a point $ x $ by aggregating the similarities $ s(p,x) $ for all $ p\in Q $. For example, we can take $ s(p,x) $ to be the angular similarity between $ p $ and $ x $ (i.e., $1-{\angle (x,p)}/{\pi}$), and aggregate by arithmetic or geometric averaging, or taking the lowest similarity. We develop locality sensitive hash families and data structures for a large set of such arithmetic and geometric averaging similarities, and analyze their collision probabilities. We also establish an analogous framework and hash families for distance functions. Specifically, we give a structure for the euclidean distance aggregated by either averaging or taking the maximum. We leverage SLSH to solve a geometric extension of the approximate near neighbors problem. In this version, we consider a metric for which the unit ball is an ellipsoid and its orientation is specified with the query. An important application that motivates our work is group recommendation systems. Such a system embeds movies and users in the same feature space, and the task of recommending a movie for a group to watch together, translates to a set-query $ Q $ using an appropriate similarity.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.