Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Hiring Fairly in the Age of Algorithms (2004.07132v1)

Published 15 Apr 2020 in cs.HC and cs.CY

Abstract: Widespread developments in automation have reduced the need for human input. However, despite the increased power of machine learning, in many contexts these programs make decisions that are problematic. Biases within data and opaque models have amplified human prejudices, giving rise to such tools as Amazon's (now defunct) experimental hiring algorithm, which was found to consistently downgrade resumes when the word "women's" was added before an activity. This article critically surveys the existing legal and technological landscape surrounding algorithmic hiring. We argue that the negative impact of hiring algorithms can be mitigated by greater transparency from the employers to the public, which would enable civil advocate groups to hold employers accountable, as well as allow the U.S. Department of Justice to litigate. Our main contribution is a framework for automated hiring transparency, algorithmic transparency reports, which employers using automated hiring software would be required to publish by law. We also explain how existing regulations in employment and trade secret law can be extended by the Equal Employment Opportunity Commission and Congress to accommodate these reports.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube