Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning sums of powers of low-degree polynomials in the non-degenerate case (2004.06898v2)

Published 15 Apr 2020 in cs.CC, cs.DS, and cs.LG

Abstract: We develop algorithms for writing a polynomial as sums of powers of low degree polynomials. Consider an $n$-variate degree-$d$ polynomial $f$ which can be written as $$f = c_1Q_1{m} + \ldots + c_s Q_s{m},$$ where each $c_i\in \mathbb{F}{\times}$, $Q_i$ is a homogeneous polynomial of degree $t$, and $t m = d$. In this paper, we give a $\text{poly}((ns)t)$-time learning algorithm for finding the $Q_i$'s given (black-box access to) $f$, if the $Q_i's$ satisfy certain non-degeneracy conditions and $n$ is larger than $d2$. The set of degenerate $Q_i$'s (i.e., inputs for which the algorithm does not work) form a non-trivial variety and hence if the $Q_i$'s are chosen according to any reasonable (full-dimensional) distribution, then they are non-degenerate with high probability (if $s$ is not too large). Our algorithm is based on a scheme for obtaining a learning algorithm for an arithmetic circuit model from a lower bound for the same model, provided certain non-degeneracy conditions hold. The scheme reduces the learning problem to the problem of decomposing two vector spaces under the action of a set of linear operators, where the spaces and the operators are derived from the input circuit and the complexity measure used in a typical lower bound proof. The non-degeneracy conditions are certain restrictions on how the spaces decompose.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.