Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Effect of Input Noise Dimension in GANs (2004.06882v1)

Published 15 Apr 2020 in cs.LG, cs.CV, eess.IV, and stat.ML

Abstract: Generative Adversarial Networks (GANs) are by far the most successful generative models. Learning the transformation which maps a low dimensional input noise to the data distribution forms the foundation for GANs. Although they have been applied in various domains, they are prone to certain challenges like mode collapse and unstable training. To overcome the challenges, researchers have proposed novel loss functions, architectures, and optimization methods. In our work here, unlike the previous approaches, we focus on the input noise and its role in the generation. We aim to quantitatively and qualitatively study the effect of the dimension of the input noise on the performance of GANs. For quantitative measures, typically \emph{Fr\'{e}chet Inception Distance (FID)} and \emph{Inception Score (IS)} are used as performance measure on image data-sets. We compare the FID and IS values for DCGAN and WGAN-GP. We use three different image data-sets -- each consisting of different levels of complexity. Through our experiments, we show that the right dimension of input noise for optimal results depends on the data-set and architecture used. We also observe that the state of the art performance measures does not provide enough useful insights. Hence we conclude that we need further theoretical analysis for understanding the relationship between the low dimensional distribution and the generated images. We also require better performance measures.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.