Papers
Topics
Authors
Recent
2000 character limit reached

MxPool: Multiplex Pooling for Hierarchical Graph Representation Learning (2004.06846v1)

Published 15 Apr 2020 in cs.LG and stat.ML

Abstract: How to utilize deep learning methods for graph classification tasks has attracted considerable research attention in the past few years. Regarding graph classification tasks, the graphs to be classified may have various graph sizes (i.e., different number of nodes and edges) and have various graph properties (e.g., average node degree, diameter, and clustering coefficient). The diverse property of graphs has imposed significant challenges on existing graph learning techniques since diverse graphs have different best-fit hyperparameters. It is difficult to learn graph features from a set of diverse graphs by a unified graph neural network. This motivates us to use a multiplex structure in a diverse way and utilize a priori properties of graphs to guide the learning. In this paper, we propose MxPool, which concurrently uses multiple graph convolution/pooling networks to build a hierarchical learning structure for graph representation learning tasks. Our experiments on numerous graph classification benchmarks show that our MxPool has superiority over other state-of-the-art graph representation learning methods.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.