Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Two-stage model and optimal SI-SNR for monaural multi-speaker speech separation in noisy environment (2004.06332v2)

Published 14 Apr 2020 in eess.AS and cs.SD

Abstract: In daily listening environments, speech is always distorted by background noise, room reverberation and interference speakers. With the developing of deep learning approaches, much progress has been performed on monaural multi-speaker speech separation. Nevertheless, most studies in this area focus on a simple problem setup of laboratory environment, which background noises and room reverberations are not considered. In this paper, we propose a two-stage model based on conv-TasNet to deal with the notable effects of noises and interference speakers separately, where enhancement and separation are conducted sequentially using deep dilated temporal convolutional networks (TCN). In addition, we develop a new objective function named optimal scale-invariant signal-noise ratio (OSI-SNR), which are better than original SI-SNR at any circumstances. By jointly training the two-stage model with OSI-SNR, our algorithm outperforms one-stage separation baselines substantially.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.