Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Embedded model discrepancy: A case study of Zika modeling (2004.06220v1)

Published 13 Apr 2020 in q-bio.PE and cs.CE

Abstract: Mathematical models of epidemiological systems enable investigation of and predictions about potential disease outbreaks. However, commonly used models are often highly simplified representations of incredibly complex systems. Because of these simplifications, the model output, of say new cases of a disease over time, or when an epidemic will occur, may be inconsistent with available data. In this case, we must improve the model, especially if we plan to make decisions based on it that could affect human health and safety, but direct improvements are often beyond our reach. In this work, we explore this problem through a case study of the Zika outbreak in Brazil in 2016. We propose an embedded discrepancy operator---a modification to the model equations that requires modest information about the system and is calibrated by all relevant data. We show that the new enriched model demonstrates greatly increased consistency with real data. Moreover, the method is general enough to easily apply to many other mathematical models in epidemiology.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.