Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 128 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Dense Registration and Mosaicking of Fingerprints by Training an End-to-End Network (2004.05972v1)

Published 13 Apr 2020 in cs.CV

Abstract: Dense registration of fingerprints is a challenging task due to elastic skin distortion, low image quality, and self-similarity of ridge pattern. To overcome the limitation of handcraft features, we propose to train an end-to-end network to directly output pixel-wise displacement field between two fingerprints. The proposed network includes a siamese network for feature embedding, and a following encoder-decoder network for regressing displacement field. By applying displacement fields reliably estimated by tracing high quality fingerprint videos to challenging fingerprints, we synthesize a large number of training fingerprint pairs with ground truth displacement fields. In addition, based on the proposed registration algorithm, we propose a fingerprint mosaicking method based on optimal seam selection. Registration and matching experiments on FVC2004 databases, Tsinghua Distorted Fingerprint (TDF) database, and NIST SD27 latent fingerprint database show that our registration method outperforms previous dense registration methods in accuracy and efficiency. Mosaicking experiment on FVC2004 DB1 demonstrates that the proposed algorithm produced higher quality fingerprints than other algorithms which also validates the performance of our registration algorithm.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.