Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Blind Adversarial Training: Balance Accuracy and Robustness (2004.05914v1)

Published 10 Apr 2020 in cs.LG and stat.ML

Abstract: Adversarial training (AT) aims to improve the robustness of deep learning models by mixing clean data and adversarial examples (AEs). Most existing AT approaches can be grouped into restricted and unrestricted approaches. Restricted AT requires a prescribed uniform budget to constrain the magnitude of the AE perturbations during training, with the obtained results showing high sensitivity to the budget. On the other hand, unrestricted AT uses unconstrained AEs, resulting in the use of AEs located beyond the decision boundary; these overestimated AEs significantly lower the accuracy on clean data. These limitations mean that the existing AT approaches have difficulty in obtaining a comprehensively robust model with high accuracy and robustness when confronting attacks with varying strengths. Considering this problem, this paper proposes a novel AT approach named blind adversarial training (BAT) to better balance the accuracy and robustness. The main idea of this approach is to use a cutoff-scale strategy to adaptively estimate a nonuniform budget to modify the AEs used in the training, ensuring that the strengths of the AEs are dynamically located in a reasonable range and ultimately improving the overall robustness of the AT model. The experimental results obtained using BAT for training classification models on several benchmarks demonstrate the competitive performance of this method.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.