Variable Rate Image Compression Method with Dead-zone Quantizer (2004.05855v2)
Abstract: Deep learning based image compression methods have achieved superior performance compared with transform based conventional codec. With end-to-end Rate-Distortion Optimization (RDO) in the codec, compression model is optimized with Lagrange multiplier $\lambda$. For conventional codec, signal is decorrelated with orthonmal transformation, and uniform quantizer is introduced. We propose a variable rate image compression method with dead-zone quantizer. Firstly, the autoencoder network is trained with RaDOGAGA \cite{radogaga} framework, which can make the latents isometric to the metric space, such as SSIM and MSE. Then the conventional dead-zone quantization method with arbitrary step size is used in the common trained network to provide the flexible rate control. With dead-zone quantizer, the experimental results show that our method performs comparably with independently optimized models within a wide range of bitrate.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.