Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variable Rate Image Compression Method with Dead-zone Quantizer (2004.05855v2)

Published 13 Apr 2020 in eess.IV

Abstract: Deep learning based image compression methods have achieved superior performance compared with transform based conventional codec. With end-to-end Rate-Distortion Optimization (RDO) in the codec, compression model is optimized with Lagrange multiplier $\lambda$. For conventional codec, signal is decorrelated with orthonmal transformation, and uniform quantizer is introduced. We propose a variable rate image compression method with dead-zone quantizer. Firstly, the autoencoder network is trained with RaDOGAGA \cite{radogaga} framework, which can make the latents isometric to the metric space, such as SSIM and MSE. Then the conventional dead-zone quantization method with arbitrary step size is used in the common trained network to provide the flexible rate control. With dead-zone quantizer, the experimental results show that our method performs comparably with independently optimized models within a wide range of bitrate.

Citations (8)

Summary

We haven't generated a summary for this paper yet.