Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning Mixtures of Spherical Gaussians via Fourier Analysis (2004.05813v2)

Published 13 Apr 2020 in cs.DS and cs.LG

Abstract: Suppose that we are given independent, identically distributed samples $x_l$ from a mixture $\mu$ of no more than $k$ of $d$-dimensional spherical gaussian distributions $\mu_i$ with variance $1$, such that the minimum $\ell_2$ distance between two distinct centers $y_l$ and $y_j$ is greater than $\sqrt{d} \Delta$ for some $c \leq \Delta $, where $c\in (0,1)$ is a small positive universal constant. We develop a randomized algorithm that learns the centers $y_l$ of the gaussians, to within an $\ell_2$ distance of $\delta < \frac{\Delta\sqrt{d}}{2}$ and the weights $w_l$ to within $cw_{min}$ with probability greater than $1 - \exp(-k/c)$. The number of samples and the computational time is bounded above by $poly(k, d, \frac{1}{\delta})$. Such a bound on the sample and computational complexity was previously unknown when $\omega(1) \leq d \leq O(\log k)$. When $d = O(1)$, this follows from work of Regev and Vijayaraghavan. These authors also show that the sample complexity of learning a random mixture of gaussians in a ball of radius $\Theta(\sqrt{d})$ in $d$ dimensions, when $d$ is $\Theta( \log k)$ is at least $poly(k, \frac{1}{\delta})$, showing that our result is tight in this case.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.