Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning Mixtures of Spherical Gaussians via Fourier Analysis (2004.05813v2)

Published 13 Apr 2020 in cs.DS and cs.LG

Abstract: Suppose that we are given independent, identically distributed samples $x_l$ from a mixture $\mu$ of no more than $k$ of $d$-dimensional spherical gaussian distributions $\mu_i$ with variance $1$, such that the minimum $\ell_2$ distance between two distinct centers $y_l$ and $y_j$ is greater than $\sqrt{d} \Delta$ for some $c \leq \Delta $, where $c\in (0,1)$ is a small positive universal constant. We develop a randomized algorithm that learns the centers $y_l$ of the gaussians, to within an $\ell_2$ distance of $\delta < \frac{\Delta\sqrt{d}}{2}$ and the weights $w_l$ to within $cw_{min}$ with probability greater than $1 - \exp(-k/c)$. The number of samples and the computational time is bounded above by $poly(k, d, \frac{1}{\delta})$. Such a bound on the sample and computational complexity was previously unknown when $\omega(1) \leq d \leq O(\log k)$. When $d = O(1)$, this follows from work of Regev and Vijayaraghavan. These authors also show that the sample complexity of learning a random mixture of gaussians in a ball of radius $\Theta(\sqrt{d})$ in $d$ dimensions, when $d$ is $\Theta( \log k)$ is at least $poly(k, \frac{1}{\delta})$, showing that our result is tight in this case.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.