Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

MLR: A Two-stage Conversational Query Rewriting Model with Multi-task Learning (2004.05812v1)

Published 13 Apr 2020 in cs.CL, cs.AI, and cs.LG

Abstract: Conversational context understanding aims to recognize the real intention of user from the conversation history, which is critical for building the dialogue system. However, the multi-turn conversation understanding in open domain is still quite challenging, which requires the system extracting the important information and resolving the dependencies in contexts among a variety of open topics. In this paper, we propose the conversational query rewriting model - MLR, which is a Multi-task model on sequence Labeling and query Rewriting. MLR reformulates the multi-turn conversational queries into a single turn query, which conveys the true intention of users concisely and alleviates the difficulty of the multi-turn dialogue modeling. In the model, we formulate the query rewriting as a sequence generation problem and introduce word category information via the auxiliary word category label predicting task. To train our model, we construct a new Chinese query rewriting dataset and conduct experiments on it. The experimental results show that our model outperforms compared models, and prove the effectiveness of the word category information in improving the rewriting performance.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.