Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Towards Transferable Adversarial Attack against Deep Face Recognition (2004.05790v2)

Published 13 Apr 2020 in cs.CV

Abstract: Face recognition has achieved great success in the last five years due to the development of deep learning methods. However, deep convolutional neural networks (DCNNs) have been found to be vulnerable to adversarial examples. In particular, the existence of transferable adversarial examples can severely hinder the robustness of DCNNs since this type of attacks can be applied in a fully black-box manner without queries on the target system. In this work, we first investigate the characteristics of transferable adversarial attacks in face recognition by showing the superiority of feature-level methods over label-level methods. Then, to further improve transferability of feature-level adversarial examples, we propose DFANet, a dropout-based method used in convolutional layers, which can increase the diversity of surrogate models and obtain ensemble-like effects. Extensive experiments on state-of-the-art face models with various training databases, loss functions and network architectures show that the proposed method can significantly enhance the transferability of existing attack methods. Finally, by applying DFANet to the LFW database, we generate a new set of adversarial face pairs that can successfully attack four commercial APIs without any queries. This TALFW database is available to facilitate research on the robustness and defense of deep face recognition.

Citations (139)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.