Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Y-net: Biomedical Image Segmentation and Clustering (2004.05698v2)

Published 12 Apr 2020 in eess.IV, cs.CV, and cs.LG

Abstract: We propose a deep clustering architecture alongside image segmentation for medical image analysis. The main idea is based on unsupervised learning to cluster images on severity of the disease in the subject's sample, and this image is then segmented to highlight and outline regions of interest. We start with training an autoencoder on the images for segmentation. The encoder part from the autoencoder branches out to a clustering node and segmentation node. Deep clustering using Kmeans clustering is performed at the clustering branch and a lightweight model is used for segmentation. Each of the branches use extracted features from the autoencoder. We demonstrate our results on ISIC 2018 Skin Lesion Analysis Towards Melanoma Detection and Cityscapes datasets for segmentation and clustering. The proposed architecture beats UNet and DeepLab results on the two datasets, and has less than half the number of parameters. We use the deep clustering branch for clustering images into four clusters. Our approach can be applied to work with high complexity datasets of medical imaging for analyzing survival prediction for severe diseases or customizing treatment based on how far the disease has propagated. Clustering patients can help understand how binning should be done on real valued features to reduce feature sparsity and improve accuracy on classification tasks. The proposed architecture can provide an early diagnosis and reduce human intervention on labeling as it can become quite costly as the datasets grow larger. The main idea is to propose a one shot approach to segmentation with deep clustering.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.