Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sampling of Stochastic Differential Equations using the Karhunen-Loève Expansion and Matrix Functions (2004.05687v1)

Published 12 Apr 2020 in math.NA and cs.NA

Abstract: We consider linearizations of stochastic differential equations with additive noise using the Karhunen-Lo`eve expansion. We obtain our linearizations by truncating the expansion and writing the solution as a series of matrix-vector products using the theory of matrix functions. Moreover, we restate the solution as the solution of a system of linear differential equations. We obtain strong and weak error bounds for the truncation procedure and show that, under suitable conditions, the mean square error has order of convergence $\mathcal{O}(\frac{1}{m})$ and the second moment has a weak order of convergence $\mathcal{O}(\frac{1}{m})$, where $m$ denotes the size of the expansion. We also discuss efficient numerical linear algebraic techniques to approximate the series of matrix functions and the linearized system of differential equations. These theoretical results are supported by experiments showing the effectiveness of our algorithms when compared to standard methods such as the Euler-Maruyama scheme.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.