Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

XtremeDistil: Multi-stage Distillation for Massive Multilingual Models (2004.05686v2)

Published 12 Apr 2020 in cs.CL and cs.LG

Abstract: Deep and large pre-trained LLMs are the state-of-the-art for various natural language processing tasks. However, the huge size of these models could be a deterrent to use them in practice. Some recent and concurrent works use knowledge distillation to compress these huge models into shallow ones. In this work we study knowledge distillation with a focus on multi-lingual Named Entity Recognition (NER). In particular, we study several distillation strategies and propose a stage-wise optimization scheme leveraging teacher internal representations that is agnostic of teacher architecture and show that it outperforms strategies employed in prior works. Additionally, we investigate the role of several factors like the amount of unlabeled data, annotation resources, model architecture and inference latency to name a few. We show that our approach leads to massive compression of MBERT-like teacher models by upto 35x in terms of parameters and 51x in terms of latency for batch inference while retaining 95% of its F1-score for NER over 41 languages.

Citations (55)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.