Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Non-Parametric Test to Detect Data-Copying in Generative Models (2004.05675v1)

Published 12 Apr 2020 in cs.LG and stat.ML

Abstract: Detecting overfitting in generative models is an important challenge in machine learning. In this work, we formalize a form of overfitting that we call {\em{data-copying}} -- where the generative model memorizes and outputs training samples or small variations thereof. We provide a three sample non-parametric test for detecting data-copying that uses the training set, a separate sample from the target distribution, and a generated sample from the model, and study the performance of our test on several canonical models and datasets. For code & examples, visit https://github.com/casey-meehan/data-copying

Citations (53)

Summary

We haven't generated a summary for this paper yet.