Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Reconstruction of piecewise-smooth multivariate functions from Fourier data (2004.05579v1)

Published 12 Apr 2020 in math.NA and cs.NA

Abstract: In some applications, one is interested in reconstructing a function $f$ from its Fourier series coefficients. The problem is that the Fourier series is slowly convergent if the function is non-periodic, or is non-smooth. In this paper, we suggest a method for deriving high order approximation to $f$ using a Pad\'e-like method. Namely, by fitting some Fourier coefficients of the approximant to the given Fourier coefficients of $f$. Given the Fourier series coefficients of a function on a rectangular domain in $\mathbb{R}d$, assuming the function is piecewise smooth, we approximate the function by piecewise high order spline functions. First, the singularity structure of the function is identified. For example in the 2-D case, we find high accuracy approximation to the curves separating between smooth segments of $f$. Secondly, simultaneously we find the approximations of all the different segments of $f$. We start by developing and demonstrating a high accuracy algorithm for the 1-D case, and we use this algorithm to step up to the multidimensional case.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)