Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Hierarchical Interpolative Factorization Preconditioner for Parabolic Equations (2004.05566v2)

Published 12 Apr 2020 in math.NA and cs.NA

Abstract: This note proposes an efficient preconditioner for solving linear and semi-linear parabolic equations. With the Crank-Nicholson time stepping method, the algebraic system of equations at each time step is solved with the conjugate gradient method, preconditioned with hierarchical interpolative factorization. Stiffness matrices arising in the discretization of parabolic equations typically have large condition numbers, and therefore preconditioning becomes essential, especially for large time steps. We propose to use the hierarchical interpolative factorization as the preconditioning for the conjugate gradient iteration. Computed only once, the hierarchical interpolative factorization offers an efficient and accurate approximate inverse of the linear system. As a result, the preconditioned conjugate gradient iteration converges in a small number of iterations. Compared to other classical exact and approximate factorizations such as Cholesky or incomplete Cholesky, the hierarchical interpolative factorization can be computed in linear time and the application of its inverse has linear complexity. Numerical experiments demonstrate the performance of the method and the reduction of conjugate gradient iterations.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube