Papers
Topics
Authors
Recent
2000 character limit reached

A Pose Proposal and Refinement Network for Better Object Pose Estimation (2004.05507v2)

Published 11 Apr 2020 in cs.CV

Abstract: In this paper, we present a novel, end-to-end 6D object pose estimation method that operates on RGB inputs. Our approach is composed of 2 main components: the first component classifies the objects in the input image and proposes an initial 6D pose estimate through a multi-task, CNN-based encoder/multi-decoder module. The second component, a refinement module, includes a renderer and a multi-attentional pose refinement network, which iteratively refines the estimated poses by utilizing both appearance features and flow vectors. Our refiner takes advantage of the hybrid representation of the initial pose estimates to predict the relative errors with respect to the target poses. It is further augmented by a spatial multi-attention block that emphasizes objects' discriminative feature parts. Experiments on three benchmarks for 6D pose estimation show that our proposed pipeline outperforms state-of-the-art RGB-based methods with competitive runtime performance.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube