Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Attribute-based Regularization of Latent Spaces for Variational Auto-Encoders (2004.05485v3)

Published 11 Apr 2020 in cs.LG and stat.ML

Abstract: Selective manipulation of data attributes using deep generative models is an active area of research. In this paper, we present a novel method to structure the latent space of a Variational Auto-Encoder (VAE) to encode different continuous-valued attributes explicitly. This is accomplished by using an attribute regularization loss which enforces a monotonic relationship between the attribute values and the latent code of the dimension along which the attribute is to be encoded. Consequently, post-training, the model can be used to manipulate the attribute by simply changing the latent code of the corresponding regularized dimension. The results obtained from several quantitative and qualitative experiments show that the proposed method leads to disentangled and interpretable latent spaces that can be used to effectively manipulate a wide range of data attributes spanning image and symbolic music domains.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.