Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Autoencoding Generative Adversarial Networks (2004.05472v1)

Published 11 Apr 2020 in cs.LG and stat.ML

Abstract: In the years since Goodfellow et al. introduced Generative Adversarial Networks (GANs), there has been an explosion in the breadth and quality of generative model applications. Despite this work, GANs still have a long way to go before they see mainstream adoption, owing largely to their infamous training instability. Here I propose the Autoencoding Generative Adversarial Network (AEGAN), a four-network model which learns a bijective mapping between a specified latent space and a given sample space by applying an adversarial loss and a reconstruction loss to both the generated images and the generated latent vectors. The AEGAN technique offers several improvements to typical GAN training, including training stabilization, mode-collapse prevention, and permitting the direct interpolation between real samples. The effectiveness of the technique is illustrated using an anime face dataset.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)