Locality-Sensitive Hashing Scheme based on Longest Circular Co-Substring (2004.05345v1)
Abstract: Locality-Sensitive Hashing (LSH) is one of the most popular methods for $c$-Approximate Nearest Neighbor Search ($c$-ANNS) in high-dimensional spaces. In this paper, we propose a novel LSH scheme based on the Longest Circular Co-Substring (LCCS) search framework (LCCS-LSH) with a theoretical guarantee. We introduce a novel concept of LCCS and a new data structure named Circular Shift Array (CSA) for $k$-LCCS search. The insight of LCCS search framework is that close data objects will have a longer LCCS than the far-apart ones with high probability. LCCS-LSH is \emph{LSH-family-independent}, and it supports $c$-ANNS with different kinds of distance metrics. We also introduce a multi-probe version of LCCS-LSH and conduct extensive experiments over five real-life datasets. The experimental results demonstrate that LCCS-LSH outperforms state-of-the-art LSH schemes.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.