Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

DNN-aided Read-voltage Threshold Optimization for MLC Flash Memory with Finite Block Length (2004.05340v1)

Published 11 Apr 2020 in cs.IT, cs.LG, and math.IT

Abstract: The error correcting performance of multi-level-cell (MLC) NAND flash memory is closely related to the block length of error correcting codes (ECCs) and log-likelihood-ratios (LLRs) of the read-voltage thresholds. Driven by this issue, this paper optimizes the read-voltage thresholds for MLC flash memory to improve the decoding performance of ECCs with finite block length. First, through the analysis of channel coding rate (CCR) and decoding error probability under finite block length, we formulate the optimization problem of read-voltage thresholds to minimize the maximum decoding error probability. Second, we develop a cross iterative search (CIS) algorithm to optimize read-voltage thresholds under the perfect knowledge of flash memory channel. However, it is challenging to analytically characterize the voltage distribution under the effect of data retention noise (DRN), since the data retention time (DRT) is hard to be recorded for flash memory in reality. To address this problem, we develop a deep neural network (DNN) aided optimization strategy to optimize the read-voltage thresholds, where a multi-layer perception (MLP) network is employed to learn the relationship between voltage distribution and read-voltage thresholds. Simulation results show that, compared with the existing schemes, the proposed DNN-aided read-voltage threshold optimization strategy with a well-designed LDPC code can not only improve the program-and-erase (PE) endurance but also reduce the read latency.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.