Papers
Topics
Authors
Recent
2000 character limit reached

A Convex Parameterization of Robust Recurrent Neural Networks (2004.05290v2)

Published 11 Apr 2020 in cs.LG, cs.SY, eess.SY, math.OC, and stat.ML

Abstract: Recurrent neural networks (RNNs) are a class of nonlinear dynamical systems often used to model sequence-to-sequence maps. RNNs have excellent expressive power but lack the stability or robustness guarantees that are necessary for many applications. In this paper, we formulate convex sets of RNNs with stability and robustness guarantees. The guarantees are derived using incremental quadratic constraints and can ensure global exponential stability of all solutions, and bounds on incremental $ \ell_2 $ gain (the Lipschitz constant of the learned sequence-to-sequence mapping). Using an implicit model structure, we construct a parametrization of RNNs that is jointly convex in the model parameters and stability certificate. We prove that this model structure includes all previously-proposed convex sets of stable RNNs as special cases, and also includes all stable linear dynamical systems. We illustrate the utility of the proposed model class in the context of non-linear system identification.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.