Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Encoder blind combinatorial compressed sensing (2004.05094v2)

Published 10 Apr 2020 in cs.LG, cs.DM, eess.SP, and stat.ML

Abstract: In its most elementary form, compressed sensing studies the design of decoding algorithms to recover a sufficiently sparse vector or code from a lower dimensional linear measurement vector. Typically it is assumed that the decoder has access to the encoder matrix, which in the combinatorial case is sparse and binary. In this paper we consider the problem of designing a decoder to recover a set of sparse codes from their linear measurements alone, that is without access to encoder matrix. To this end we study the matrix factorisation task of recovering both the encoder and sparse coding matrices from the associated linear measurement matrix. The contribution of this paper is a computationally efficient decoding algorithm, Decoder-Expander Based Factorisation, with strong performance guarantees. In particular, under mild assumptions on the sparse coding matrix and by deploying a novel random encoder matrix, we prove that Decoder-Expander Based Factorisation recovers both the encoder and sparse coding matrix at the optimal measurement rate with high probability and from a near optimal number of measurement vectors. In addition, our experiments demonstrate the efficacy and computational efficiency of our algorithm in practice. Beyond compressed sensing our results may be of interest for researchers working in areas such as linear sketching, coding theory and matrix compression.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube