Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Self Punishment and Reward Backfill for Deep Q-Learning (2004.05002v2)

Published 10 Apr 2020 in cs.AI and cs.LG

Abstract: Reinforcement learning agents learn by encouraging behaviours which maximize their total reward, usually provided by the environment. In many environments, however, the reward is provided after a series of actions rather than each single action, leading the agent to experience ambiguity in terms of whether those actions are effective, an issue known as the credit assignment problem. In this paper, we propose two strategies inspired by behavioural psychology to enable the agent to intrinsically estimate more informative reward values for actions with no reward. The first strategy, called self-punishment (SP), discourages the agent from making mistakes that lead to undesirable terminal states. The second strategy, called the rewards backfill (RB), backpropagates the rewards between two rewarded actions. We prove that, under certain assumptions and regardless of the reinforcement learning algorithm used, these two strategies maintain the order of policies in the space of all possible policies in terms of their total reward, and, by extension, maintain the optimal policy. Hence, our proposed strategies integrate with any reinforcement learning algorithm that learns a value or action-value function through experience. We incorporated these two strategies into three popular deep reinforcement learning approaches and evaluated the results on thirty Atari games. After parameter tuning, our results indicate that the proposed strategies improve the tested methods in over 65 percent of tested games by up to over 25 times performance improvement.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.