Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Spatiotemporal Fusion in 3D CNNs: A Probabilistic View (2004.04981v1)

Published 10 Apr 2020 in cs.CV

Abstract: Despite the success in still image recognition, deep neural networks for spatiotemporal signal tasks (such as human action recognition in videos) still suffers from low efficacy and inefficiency over the past years. Recently, human experts have put more efforts into analyzing the importance of different components in 3D convolutional neural networks (3D CNNs) to design more powerful spatiotemporal learning backbones. Among many others, spatiotemporal fusion is one of the essentials. It controls how spatial and temporal signals are extracted at each layer during inference. Previous attempts usually start by ad-hoc designs that empirically combine certain convolutions and then draw conclusions based on the performance obtained by training the corresponding networks. These methods only support network-level analysis on limited number of fusion strategies. In this paper, we propose to convert the spatiotemporal fusion strategies into a probability space, which allows us to perform network-level evaluations of various fusion strategies without having to train them separately. Besides, we can also obtain fine-grained numerical information such as layer-level preference on spatiotemporal fusion within the probability space. Our approach greatly boosts the efficiency of analyzing spatiotemporal fusion. Based on the probability space, we further generate new fusion strategies which achieve the state-of-the-art performance on four well-known action recognition datasets.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.