Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Spatiotemporal Fusion in 3D CNNs: A Probabilistic View (2004.04981v1)

Published 10 Apr 2020 in cs.CV

Abstract: Despite the success in still image recognition, deep neural networks for spatiotemporal signal tasks (such as human action recognition in videos) still suffers from low efficacy and inefficiency over the past years. Recently, human experts have put more efforts into analyzing the importance of different components in 3D convolutional neural networks (3D CNNs) to design more powerful spatiotemporal learning backbones. Among many others, spatiotemporal fusion is one of the essentials. It controls how spatial and temporal signals are extracted at each layer during inference. Previous attempts usually start by ad-hoc designs that empirically combine certain convolutions and then draw conclusions based on the performance obtained by training the corresponding networks. These methods only support network-level analysis on limited number of fusion strategies. In this paper, we propose to convert the spatiotemporal fusion strategies into a probability space, which allows us to perform network-level evaluations of various fusion strategies without having to train them separately. Besides, we can also obtain fine-grained numerical information such as layer-level preference on spatiotemporal fusion within the probability space. Our approach greatly boosts the efficiency of analyzing spatiotemporal fusion. Based on the probability space, we further generate new fusion strategies which achieve the state-of-the-art performance on four well-known action recognition datasets.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube