Stacked Convolutional Deep Encoding Network for Video-Text Retrieval (2004.04959v1)
Abstract: Existing dominant approaches for cross-modal video-text retrieval task are to learn a joint embedding space to measure the cross-modal similarity. However, these methods rarely explore long-range dependency inside video frames or textual words leading to insufficient textual and visual details. In this paper, we propose a stacked convolutional deep encoding network for video-text retrieval task, which considers to simultaneously encode long-range and short-range dependency in the videos and texts. Specifically, a multi-scale dilated convolutional (MSDC) block within our approach is able to encode short-range temporal cues between video frames or text words by adopting different scales of kernel size and dilation size of convolutional layer. A stacked structure is designed to expand the receptive fields by repeatedly adopting the MSDC block, which further captures the long-range relations between these cues. Moreover, to obtain more robust textual representations, we fully utilize the powerful LLM named Transformer in two stages: pretraining phrase and fine-tuning phrase. Extensive experiments on two different benchmark datasets (MSR-VTT, MSVD) show that our proposed method outperforms other state-of-the-art approaches.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.