Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

An Improved Cutting Plane Method for Convex Optimization, Convex-Concave Games and its Applications (2004.04250v1)

Published 8 Apr 2020 in cs.DS, cs.LG, and stat.ML

Abstract: Given a separation oracle for a convex set $K \subset \mathbb{R}n$ that is contained in a box of radius $R$, the goal is to either compute a point in $K$ or prove that $K$ does not contain a ball of radius $\epsilon$. We propose a new cutting plane algorithm that uses an optimal $O(n \log (\kappa))$ evaluations of the oracle and an additional $O(n2)$ time per evaluation, where $\kappa = nR/\epsilon$. $\bullet$ This improves upon Vaidya's $O( \text{SO} \cdot n \log (\kappa) + n{\omega+1} \log (\kappa))$ time algorithm [Vaidya, FOCS 1989a] in terms of polynomial dependence on $n$, where $\omega < 2.373$ is the exponent of matrix multiplication and $\text{SO}$ is the time for oracle evaluation. $\bullet$ This improves upon Lee-Sidford-Wong's $O( \text{SO} \cdot n \log (\kappa) + n3 \log{O(1)} (\kappa))$ time algorithm [Lee, Sidford and Wong, FOCS 2015] in terms of dependence on $\kappa$. For many important applications in economics, $\kappa = \Omega(\exp(n))$ and this leads to a significant difference between $\log(\kappa)$ and $\mathrm{poly}(\log (\kappa))$. We also provide evidence that the $n2$ time per evaluation cannot be improved and thus our running time is optimal. A bottleneck of previous cutting plane methods is to compute leverage scores, a measure of the relative importance of past constraints. Our result is achieved by a novel multi-layered data structure for leverage score maintenance, which is a sophisticated combination of diverse techniques such as random projection, batched low-rank update, inverse maintenance, polynomial interpolation, and fast rectangular matrix multiplication. Interestingly, our method requires a combination of different fast rectangular matrix multiplication algorithms.

Citations (97)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube