Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Saliency-based Weighted Multi-label Linear Discriminant Analysis (2004.04221v1)

Published 8 Apr 2020 in cs.LG and stat.ML

Abstract: In this paper, we propose a new variant of Linear Discriminant Analysis (LDA) to solve multi-label classification tasks. The proposed method is based on a probabilistic model for defining the weights of individual samples in a weighted multi-label LDA approach. Linear Discriminant Analysis is a classical statistical machine learning method, which aims to find a linear data transformation increasing class discrimination in an optimal discriminant subspace. Traditional LDA sets assumptions related to Gaussian class distributions and single-label data annotations. To employ the LDA technique in multi-label classification problems, we exploit intuitions coming from a probabilistic interpretation of class saliency to redefine the between-class and within-class scatter matrices. The saliency-based weights obtained based on various kinds of affinity encoding prior information are used to reveal the probability of each instance to be salient for each of its classes in the multi-label problem at hand. The proposed Saliency-based weighted Multi-label LDA approach is shown to lead to performance improvements in various multi-label classification problems.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.