Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Multilevel Asymptotic-Preserving Monte Carlo for Particle Simulations (2004.04071v2)

Published 8 Apr 2020 in math.NA and cs.NA

Abstract: We develop a novel multilevel asymptotic-preserving Monte Carlo method, called Multilevel Kinetic-Diffusion Monte Carlo (ML-KDMC), for simulating the kinetic Boltzmann transport equation with a Bhatnagar-Gross-Krook (BGK) collision operator. This equation occurs, for instance, in mathematical models of the neutral particles in the plasma edge of nuclear fusion reactors. In this context, the Kinetic-Diffusion Monte Carlo method is known to maintain accuracy both in the low-collisional and the high-collisional limit, without an exploding simulation cost in the latter. We show that, by situating this method within a Multilevel Monte Carlo (MLMC) framework, using a hierarchy of larger time step sizes, the simulation cost is reduced even further. The different levels in our ML-KDMC method are connected via a new and improved recipe for correlating particle trajectories with different time step sizes. Furthermore, a new and more general level selection strategy is presented. We illustrate the efficiency of our ML-KDMC method by applying it to a one-dimensional test case with nonhomogeneous and anisotropic plasma background. Our method yields significant speedups compared to the single-level KDMC scheme, both in the low and high collisional regime. In the high-collisional case, our ML-KDMC outperforms the single-level KDMC method by several orders of magnitude.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.