Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Convolutional neural net face recognition works in non-human-like ways (2004.04069v2)

Published 8 Apr 2020 in cs.CV

Abstract: Convolutional neural networks (CNNs) give state of the art performance in many pattern recognition problems but can be fooled by carefully crafted patterns of noise. We report that CNN face recognition systems also make surprising "errors". We tested six commercial face recognition CNNs and found that they outperform typical human participants on standard face matching tasks. However, they also declare matches that humans would not, where one image from the pair has been transformed to look a different sex or race. This is not due to poor performance; the best CNNs perform almost perfectly on the human face matching tasks, but also declare the most matches for faces of a different apparent race or sex. Although differing on the salience of sex and race, humans and computer systems are not working in completely different ways. They tend to find the same pairs of images difficult, suggesting some agreement about the underlying similarity space.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.