Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Image super-resolution reconstruction based on attention mechanism and feature fusion (2004.03939v1)

Published 8 Apr 2020 in eess.IV and cs.CV

Abstract: Aiming at the problems that the convolutional neural networks neglect to capture the inherent attributes of natural images and extract features only in a single scale in the field of image super-resolution reconstruction, a network structure based on attention mechanism and multi-scale feature fusion is proposed. By using the attention mechanism, the network can effectively integrate the non-local information and second-order features of the image, so as to improve the feature expression ability of the network. At the same time, the convolution kernel of different scales is used to extract the multi-scale information of the image, so as to preserve the complete information characteristics at different scales. Experimental results show that the proposed method can achieve better performance over other representative super-resolution reconstruction algorithms in objective quantitative metrics and visual quality.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)