Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Mixture Density Conditional Generative Adversarial Network Models (MD-CGAN) (2004.03797v3)

Published 8 Apr 2020 in cs.LG and stat.ML

Abstract: Generative Adversarial Networks (GANs) have gained significant attention in recent years, with impressive applications highlighted in computer vision in particular. Compared to such examples, however, there have been more limited applications of GANs to time series modelling, including forecasting. In this work, we present the Mixture Density Conditional Generative Adversarial Model (MD-CGAN), with a focus on time series forecasting. We show that our model is capable of estimating a probabilistic posterior distribution over forecasts and that, in comparison to a set of benchmark methods, the MD-CGAN model performs well, particularly in situations where noise is a significant component of the observed time series. Further, by using a Gaussian mixture model as the output distribution, MD-CGAN offers posterior predictions that are non-Gaussian.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.