Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Towards Highly Scalable Runtime Models with History (2004.03727v1)

Published 7 Apr 2020 in cs.SE

Abstract: Advanced systems such as IoT comprise many heterogeneous, interconnected, and autonomous entities operating in often highly dynamic environments. Due to their large scale and complexity, large volumes of monitoring data are generated and need to be stored, retrieved, and mined in a time- and resource-efficient manner. Architectural self-adaptation automates the control, orchestration, and operation of such systems. This can only be achieved via sophisticated decision-making schemes supported by monitoring data that fully captures the system behavior and its history. Employing model-driven engineering techniques we propose a highly scalable, history-aware approach to store and retrieve monitoring data in form of enriched runtime models. We take advantage of rule-based adaptation where change events in the system trigger adaptation rules. We first present a scheme to incrementally check model queries in the form of temporal logic formulas which represent the conditions of adaptation rules against a runtime model with history. Then we enhance the model to retain only information that is temporally relevant to the queries, therefore reducing the accumulation of information to a required minimum. Finally, we demonstrate the feasibility and scalability of our approach via experiments on a simulated smart healthcare system employing a real-world medical guideline.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.