Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Multimodal Image Synthesis with Conditional Implicit Maximum Likelihood Estimation (2004.03590v1)

Published 7 Apr 2020 in cs.CV, cs.GR, cs.LG, cs.NE, and eess.IV

Abstract: Many tasks in computer vision and graphics fall within the framework of conditional image synthesis. In recent years, generative adversarial nets (GANs) have delivered impressive advances in quality of synthesized images. However, it remains a challenge to generate both diverse and plausible images for the same input, due to the problem of mode collapse. In this paper, we develop a new generic multimodal conditional image synthesis method based on Implicit Maximum Likelihood Estimation (IMLE) and demonstrate improved multimodal image synthesis performance on two tasks, single image super-resolution and image synthesis from scene layouts. We make our implementation publicly available.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.